If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4-20=0
We add all the numbers together, and all the variables
3x^2-16=0
a = 3; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·3·(-16)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*3}=\frac{0-8\sqrt{3}}{6} =-\frac{8\sqrt{3}}{6} =-\frac{4\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*3}=\frac{0+8\sqrt{3}}{6} =\frac{8\sqrt{3}}{6} =\frac{4\sqrt{3}}{3} $
| 11+3x=-0.58 | | x^2*(0,03+0,05*T)=3 | | 4*a=416 | | 6(x+7)+3=11x-5(x-3) | | 23(x−7)=−2 | | 11-8(7-6x)=5(7x)-11x | | 4+4(5x-5)=8-4(2x+1) | | 2x+7x=-3x+17 | | (2-5x)^2=6 | | −7.8(x+6.5)=−25.74 | | (x+2)/3=(x-2)/7 | | 73=14h−2/7 | | x×x=196 | | 6(n+5)=16 | | (2πr^2+4π)/(2πr)=3 | | 535/x=5 | | 535/x=6 | | x+6=5x–8 | | 6x+5=3(x-2) | | -15v-49=23-8v | | (x–4)2=5. | | 3-2(n-4)-1=6 | | 20k=+50 | | j-21/2=21/2 | | b/20=9 | | -14=j/3-16 | | 195=13.x | | 3.5+y=8 | | 0=w+7/3 | | 16=t/3+12 | | 5(x-12)-24=3(×+2) | | 13-3q=-5 |